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COMMENT 

Critical behaviour of the non-equilibrium Ising model with 
locally competing temperatures 

M C Marques 
Centro de Fisica da Universidade do Porto (INIC), 4000 Porto, Portugal 

Received 9 June 1989 

Abstract. We use a method which combines the ideas of the renormalisation group and 
mean-field theory to obtain the phase diagram of two- and three-dimensional non-equili- 
brium Ising models with two locally competing temperatures. Comparison is made with 
available results of other authors. An estimate of critical exponent v is derived. 

Among the simplest examples one can envisage of non-equilibrium systems whose 
steady states display a phase transition is the Ising model with locally competing 
temperatures. This is a well defined lattice model system and the non-equilibrium 
condition results from the competition between two microscopic mechanisms, each 
one satisfying individually a detailed balance condition at a different temperature. 

This model was first considered by Garrido et a1 [l]; these authors did computer 
simulations and also applied to the two-dimensional system a mean-field-like theory 
developed for another non-equilibrium problem by Dickman [2]. However, they have 
not investigated whether the numerical simulation data can indeed be characterised 
by the classical critical behaviour predicted in their theory or whether the critical 
exponents for this non-equilibrium model are the same as for the equilibrium Ising 
model; this is in fact what is argued by Grinstein et a1 [3] should happen for 
non-equilibrium systems with up-down symmetry, and has already been verified for 
the Ising model with competing dynamics [4,5]. 

In this work we apply the ideas of the mean-field renormalisation group (MFRG),  

an approach closely related to phenomenological and finite-size scaling which has 
successfully been applied to equilibrium phase transitions [ 6 ] .  The method combines 
the RG assumptions and the idea of mean-field and leads, in general, to better estimates 
of critical parameters and critical exponents than the ones obtained by mean-field 
theories. This same approach was recently applied to the non-equilibrium Ising model 
with competing dynamics [7]. 

For the model studied here, one spin, picked at random, performs a spin-flip 
(with probability p (1 - p )  at the Metropolis rate which corresponds to temperature 
(l=+m)). The appearance of order in the steady state of this system means that the 

fraction of spins in state 1 (denoted f( 1)) is bigger than the fraction of spins in state 
-1 (f(-1)); we w r i t e f ( l ) = ( 1 + 6 ) / 2 , f ( - l ) = ( 1 - 6 ) / 2 .  

We now study a cluster of two spins and consider P ( i j ) ,  the probability of spins 
1 , 2  being respectively in states i,j, given that their neighbours outside the cluster have 
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each a probability ( I *  b)/2 of being in state *l .  We get for the time evolution of 
P(11), in the case of a square lattice: 

dP(l l )  - A  (P(1- 1)+ P(-11)) - P(l1)B (1) d t  2 

where 

1-b 

x [ p  exp( -5) + ( I  - p )  exp ( -- T:AT)] 

1-b l + b  * 
B = (F) ’[ p exp ( - +) + (1 - p )  exp ( - ___ T : A T ) l i 3 ( T ) ( I )  

+ 3 ( + b ) 2 ( 3 + ( T )  1-b 

and T = ( kB T ) /  J, AT = ( ksm)/ J, J being the nearest-neighbour interaction. 

way. 

in b, we get, from ( l ) ,  the stationarity condition 

The time evolution of P( -1 1) + P( 1 - 1) and P( -1 - 1) can be obtained in the same 

In the vicinity of a second-order phase transition, b is a small quantity; expanding 

+ 4 +  b [ 3 [ p exp (-+) + (1 - p )  exp -- ( T:AT)] 

P(1- 1) + P( -11) 

+ b [ 3 -3 [ P exp (-$) + (1 -P) exp (-&)]I} +O(b2). 

{ 7 + [ p exp (-s> + (1 - p )  exp -- ( T+4AT)] 
- - 

2 

By considering the other stationary equations, we obtain 

P(11)- P(-1- 1) 

= b { 54- 18 [ p exp (-+) + (1 - p )  exp -- ( T:AT)] 
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- ~ [ P ~ X P ( - - ~ ) + ( ~ - P ) ~ X P ( - & ) ] }  

x { 44+49 [ p exp (-+) + (1 - p )  exp ( -- T+4AT)] 

+(1-p)exp -- ( T:AT)] 

+ 7 [  p exp( -$) + ( l - p )  exp( -=)I 12 + p  exp( -$) 
+(1-p)exp  ( -- l6 ) } - ‘ + O ( b ’ )  

T+AT 

=hdT AT,P)b+O(b’) .  

Considering now a one-spin cluster, we denote by P( i )  the probability of this spin 
being in state i ,  given that its neighbours have each a probability (1 f b ‘ ) / 2  of being 
in state *l .  

P(1)-P(-1) 

The stationary condition is, in this case 

= b ’ { l 2 - 8 [ p e x p ( - $ ) + ( l - p ) e x p  ( -- T’:AT)] 

-4[ p exp( -5) + ( l - p )  exp ( -- T:AT)l} 

x { 11 + 4  [ p exp( --+) + (1 - p )  exp ( -- .’:AT)] 

+ p  exp( -5) +( l -p )  exp( - G ) } - ’ + O ( b ‘ ’ )  8 

=A( T’, AT, p ) b ’ +  O(b’’) .  

The important assumption of MFRG is to consider that P(1)-P(-1) and 
P(l1)-P(-1 - 1) must, in the vicinity of the transition, scale like b’ and b, respectively. 
This gives the RG recursion relation K ’ =  K ’ ( K )  (where K ‘ =  1/ TI, K = 1/ T), and the 
fixed point equation 

In figures 1 and 2 we have represented the variation of T, with p and AT as obtained 
from ( 2 )  and compared the present results with those of [ 11 where Dickman’s method 
was used. A rather good agreement between the two theories is displayed. As concerns 
the value p * ,  above which T, never reaches zero regardless of the magnitude of AT 
our estimate is p*=0.910, slightly above the value p *  =$ obtained in [l]. Figure 3 
shows the equivalent plot for the three-dimensional system; we get in that case 
p* = 0.900. 
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Figure 1. Plots of T, as a function of AT for d = 2  
and different values of p .  The full curves represent 
MFRG results for p = O ,  0.5, 0.7, 0.8, 0.9, 1.0 (from 
bottom to top) and the broken curves represent 
results of [ l ]  for p =0, 0.5, 0.844, 0.9, 1.0. 

Figure 2. Plots of T, as a function of p for d = 2 and 
different values of AT. The full curves represent 
MFRG results for AT=O, 2 ,  3.14, 4, 10 (from top to 
bottom) and the broken curves represent results of 
[ l ]  for AT=O, 2, 2.88, 4, 10. 

There does not seem to exist enough numerical simulations to test the phase diagram 
for the entire parameter space. Garrido et a1 [ 11 report a far smaller variation of the 
critical temperature when AT varies from AT = 0.1 to AT = 1.0 at p = 0.5 than the 
approximate 15% decrease given by mean-field and our method. However, their MC 

results do not extend to higher values of AT or different p .  
In what concerns critical exponents it still remains to clarify whether they are the 

classical ones predicted by Garrido et a1 [ l ]  or whether the argument of Grinstein 
et a1 [ 3 ]  holds and they are in fact the equilibrium Ising exponents. 

The application of the MFRG method to equilibrium systems leads usually to better 
estimates for the critical parameters than for the critical exponent, at least when 
comparison of very small clusters is involved; however slow the convergence to the 
exact values may be, they still represent a better approximation than mean-field theory. 
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We have estimated the critical exponent v by linearisation of the recursion relation 
around the fixed point 

where 1 is the scaling factor. 
For d = 2 ,  we used 1 = d, and obtained v = 1.2 for AT = 3.0, p = 0.4, with a variation 

of a few percent when the parameters AT and p were changed. This compares well 
with the exact value for the equilibrium Ising model, v = 1, and is within the level of 
approximation that MFRG attains in equilibrium systems when clusters of small size 
are considered. 

For d = 3 ,  we used a scaling factor corrected for the lack of appropriate symmetg 
of the two clusters involved; according to Slotte [8], 1 should in this case be I = 3J&. 
This gives, within the present approximation, v = 0.62 f 0.02, which compares very well 
with the series expansions result for the three-dimensional equilibrium Ising system 
v = 0.63. 

We think that the consideration of bigger clusters, namely of more appropriate 
symmetry, is likely to improve the results. However, we are able by this present 
approach to predict for the two-dimensional system a phase diagram in close agreement 
with the one obtained by a different method, and extend our results to the three- 
dimensional case; our estimates of v, although not very accurate, point in the direction 
of a critical behaviour characterised by the equilibrium Ising exponents. 
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